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1. Introduction

Compactifications with fluxes and branes provide an opportunity to construct four-

dimensional vacua of string theory with many phenomenologically necessary features, such

as reduced supersymmetry, hierarchies of scales and potentially a positive cosmological

constant. To make these models viable, however, one must stabilize any moduli fields that

remain in the effective theory. The most well-studied scenario takes place in type IIB

string theory, where three-form fluxes can lift the complex structure moduli and the dila-

ton [1, 2]. The Kähler moduli, however, remain massless unless additional effects occur.

Due to the freedom of the overall volume, these effective theories are called “no-scale”.

In addition, D3-branes filling noncompact spacetime and sitting at points on the compact

space feel no potential. D3-branes are of great interest in flux compactifications, as they

can provide gauge groups for a braneworld scenario or provoke cosmological evolution via

brane inflation. A lack of a brane potential in the no-scale models would have substantial

consequences for any low-energy model.
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The most prominent mechanism for stabilizing the Kähler moduli is non-perturbative

strong-coupling dynamics taking place on 7-branes (or Euclidean D3-branes) wrapping 4-

cycles, as described by KKLT [3]. With a mild fine-tune of parameters, the geometry can

be stabilized at large volume, where subleading corrections can be neglected. In addition,

the nonperturbative physics is sensitive to the locations of D3-branes, and consequently

they acquire a potential as well. It is this potential that we consider in this paper.

The general contribution of the D3-branes to the nonperturbative superpotential was

formulated in [4]; see also [5]. In [6], the general equations constraining supersymmetric

vacua were obtained, and then studied in the particular case of the tip of the Klebanov-

Strassler warped throat [7], for a number of different 7-brane embeddings. It was found

that depending on the embedding, one could find for the D3-branes a moduli space of

supersymmetric vacua, isolated supersymmetric vacua, or no supersymmetric vacua at all.

In this paper, we continue to investigate the vacua of moduli-stabilized D3-branes by

turning to the nonsupersymmetric case. We consider the general equations for a mini-

mum of the coupled system of a D3-brane and a single Kähler modulus. We describe the

stabilization of the Kähler axion in all generality, and demonstrate how large-volume so-

lutions have compact volumes and cosmological constants approaching the results for the

supersymmetric cases.

We then turn to studying the vacua in the particular cases of two 7-brane embeddings,

the so-called “simplest Kuperstein” [8] and “Karch-Katz” [9] embeddings. We find that

nonsupersymmetric vacua may exist at the tip of the KS throat, but they are not generic;

in general one parameter of the 7-brane embedding must be tuned. When they do exist, we

study them in the most trustworthy limit of large volume and a long throat, and find that

as the 7-brane embedding is varied, continuous spaces of nonsupersymmetric anti-de Sitter

vacua interpolate between the supersymmetric vacua. In our examples the supersymmetric

vacua lie at fixed or partially fixed loci of the unbroken geometric symmetry, while the

nonsupersymmetric vacua do not; hence the nonsupersymmetric examples, when they exist,

end up filling out higher-dimensional spaces of solutions than the supersymmetric ones.

We consider also the issue of the stability of these nonsupersymmetric vacua; since they

are anti-de Sitter, this is determined by the Breitenlohner-Freedman bound. We find that

although stability is by no means generic, there are 7-brane embeddings that produce stable

nonsupersymmetric vacua. The nonsupersymmetric vacua have cosmological constants

slightly more negative than the stable supersymmetric cases, a situation not unusual in AdS

supergravities. We also extend the argument from [6], proven there in the supersymmetric

case, that D3-branes will have the same vacua as D3-branes at the bottom of a KS throat,

removing a potential obstacle to brane inflation (for some work in the context of these

nonperturbative potentials see [10]).

In section 2 we review the moduli-stabilizing KKLT superpotential and the geometry

of the conifold. In section 3 we review the supersymmetric solutions and describe the

equations for nonsupersymmetric vacua in general, before specializing to two particular

embeddings and their solutions in sections 4 and 5. Finally we argue that the D3-branes

share the same vacua as D3-branes at the tip of the conifold throat in section 6, before

concluding in section 7.

– 2 –
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2. Review

2.1 Moduli and superpotential

We will be concerned with a flux compactification of type IIB string theory with a single

complex Kähler modulus ρ and three complex moduli for the position of a D3- (or D3-)

brane; the complex structure moduli and dilaton are assumed already stabilized by three-

form fluxes. The real and imaginary parts of the Kähler modulus are

ρ =
1

2
(e4u + γk(Y, Y )/3) + ib , (2.1)

where b is the axion field associated to C4, e4u parameterizes the volume of the correspond-

ing 4-cycle, and k(Y, Y ) is the geometric (“little”) Kähler potential for the Calabi-Yau

space depending on the holomorphic coordinates Y I , I = 1, 2, 3 and their conjugates, and

γ = TD3κ
2
4. The associated total Kähler potential for all the relevant moduli is

K = −3 log e4u = −3 log(ρ + ρ − γk(Y, Y )/3) , (2.2)

and in what follows we will absorb γ into k for simplicity of notation. We take as our

superpotential the KKLT form with a nonperturbative contribution [3, 4],

W = W0 + A0e
−aρf(Y )1/n , (2.3)

where W0 and A0 are complex constants and f(Y ) = 0 defines the embedding of the

n 7-branes (or Euclidean D3-branes) producing the nonperturbative effects. It is also

convienent to define

A(Y ) ≡ A0f(Y )1/n , ζ(Y ) ≡ − 1

n
log f(Y ) , (2.4)

such that

W = W0 + A(Y ) e−aρ = W0 + A0e
−aρ−ζ(Y ) . (2.5)

In addition, we will find it useful to introduce the (in general complex) quantity

ω(ρ, Y ) ≡ W0

A(Y )
eaρ , (2.6)

which measures the relative magnitude of the perturbative and nonperturbative terms in

the superpotential. We note that the quantities k(Y, Ȳ ), ρ and ζ(Y ) are not uniquely

defined, but transform according to “little Kähler transformations”,

k → k + 3 ξ(Y ) + 3 ξ̄(Ȳ ) ,

ρ → ρ + ξ(Y ) , (2.7)

ζ → ζ − a ξ(Y ) ,

where e4u and aρ + ζ(Y ) are invariants.

– 3 –
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2.2 The conifold and its tip

We will study the geometry of the deformed conifold, and in particular its tip. The deformed

conifold may be defined by a set of four complex variables z1, z2, z3, z4 with the constraint

4
∑

A=1

(zA)2 = ǫ2 , (2.8)

where ǫ determines the degree of deformation; for convenience, we will choose it to be real

and positive. A geometric SO(4) symmetry acts on the zA in the obvious way. We can

think of the conifold as a compact five-dimensional space times a radial coordinate,

r3 ≡
4
∑

A=1

|zA|2 , (2.9)

where at r → ∞ the space approaches the ordinary conifold with metric

ds2 = dr2 + r2dΩ2
T 1,1 , (2.10)

showing explicitly the space is a cone over the compact five-dimensional space T 1,1, which

has topology S2 × S3. Meanwhile we can see that the “bottom” or “tip” of the throat

occurs at the minimal value

r3 = ǫ2 , @ tip , (2.11)

at which point the S2 shrinks to zero size but the S3 remains; the SO(4) symmetry acts

naturally on this S3. In terms of the radial variable τ defined by r3 = ǫ2 cosh τ , the metric

near the tip becomes

ds2 ≈ dτ2 + τ2dΩ2
S2 + dΩ2

S3 . (2.12)

The tip of the throat corresponds to taking the zA to be real,

zA = |zA| , @ tip . (2.13)

In calculations it is often necessary to choose three of the four zA as independent variables.

We will take z1 to be dependent, so that

z1 =
√

ǫ2 − (z2)2 − (z3)2 − (z4)2 ,
∂z1

∂za
= −za

z1
, a = 2, 3, 4 , (2.14)

which is valid as long as z1 6= 0. Near the tip the little Kähler potential has the form [11],

k(Y, Y ) ≈ k0 + Q

[

(

r3

ǫ2
− 1

)

− 1

10

(

r3

ǫ2
− 1

)2

+ . . .

]

, (2.15)

where k0 and Q are constants, the latter taking the form

Q ≡ 21/6

31/3
TD3κ

2
4ǫ

4/3 . (2.16)

The constant k0 is absent from K (equation (2.2)) and its derivatives, which only depend

on the little Kähler-invariant e4u, and thus appears only in the superpotential in the com-

bination A0e
−ak0/6. For convenience, we will absorb it into our definition of A0, and so set

k0 = 0 in the following.

– 4 –
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3. General solutions

In this section we first review the equations and solutions for supersymmetric solutions for

the Kähler and brane moduli, and then develop the equations for nonsupersymmetric vacua

in generality. In the following sections, we pick explicit choices for the 7-brane embedding

and study the corresponding solutions.

3.1 Supersymmetric solutions

The potential for the moduli in the presence of the superpotential is as usual

V = eK
(

gαβDαWDβW − 3|W |2
)

, (3.1)

where α, β = ρ, I runs over the four moduli, with I taking the three values for the geometric

moduli, and as usual the Kähler covariant derivative is

DαW = ∂αW + W∂αK . (3.2)

For the case at hand given by equations (2.2), (2.3), these evaluate at the tip of the geometry

to

DρW = −W0

ω
(a + 3e−4u(1 + ω)) , (3.3)

DIW =
W0

ω
∂Iζ . (3.4)

The supersymmetric solutions satisfy DρW = DIW = 0, and are thus given by [6]

ω = −1 − ae4u

3
, ∂Iζ(Y ) = 0 . (3.5)

The second equation is equivalent to (∂If)/f = 0, which in principle fixes the geometric

moduli Y I , although in practice many cases have moduli spaces of solutions, as we shall

discuss further. Meanwhile the right-hand-side of the first equation is real, so given specified

values of the Y I the axion b ≡ Im ρ is fixed by the imaginary part of this relation as

b = −1

a
arg

(

− W0

A(Y )

)

, (3.6)

while the volume e4u is stabilized by the real part of the equation at

∣

∣

∣

∣

W0

A(Y )

∣

∣

∣

∣

eae4u/2 = 1 +
ae4u

3
. (3.7)

As is well-known, large volume solutions can only exist for sufficiently small |W0/A(Y )|.

3.2 Nonsupersymmetric solutions

In order to find non-supersymmetric vacua we will identify all extrema ∂αV = 0, ruling

out the cases which satisfy equation (3.5) and are therefore supersymmetric. It is useful to

– 5 –
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calculate the metric on moduli space gαβ̄ ≡ ∂α∂β̄K and its inverse gαβ̄ , which at the tip of

the geometry where ∂Ik = 0 take the form,

gαβ̄ =

(

3e−8u 0

0 e−4ukIJ̄

)

, gαβ̄ =

(

1
3e8u 0

0 e4ukIJ̄

)

, (3.8)

where kIJ̄ ≡ ∂I∂J̄k and kIJ̄ is its inverse. For the particular case of the za coordinates at

the tip these become

kab̄ =
Q

ǫ2

(

δab̄ +
zazb̄

|z1|2

)

, kab̄ =
ǫ2

Q

(

δab̄ − zazb̄

ǫ2

)

. (3.9)

The value of the potential at the tip is then

V =
a|W0|2e−8u

|ω|2
(

ae4u

3
+ 2 + ω + ω̄ + G(Y )

)

, (3.10)

where we have defined the real quantity,

G(Y ) ≡ 1

a
kIJ̄∂Iζ∂J̄ ζ̄ , (3.11)

We shall find that equations simplify if we measure ω in terms of its separation from the

SUSY solution,

δ ≡ ω − ωSUSY = ω + 1 +
ae4u

3
, (3.12)

in terms of which we have

V =
a|W0|2e−8u

|ω|2
(

−ae4u

3
+ δ + δ̄ + G(Y )

)

. (3.13)

The supersymmetric solution then has

δSUSY = GSUSY = 0 , VSUSY = −a2|W0|2e−4u

3|ω|2 . (3.14)

The cosmological constant is manifestly negative.

We now turn to the first derivatives of the potential, the vanishing of which will give

us the general vacua. For the ρ-derivative we find

∂ρV = −a|W0|2e−12u

|ω|2
(

ae4uδ̄ + 2(δ + δ̄) + (ae4u + 2)G
)

. (3.15)

We note immediately that the only term that is not real is the first one with δ̄. Thus upon

imposing ∂ρV = 0, the imaginary part of the equation simply requires

Im ω = 0 , (3.16)

equivalent to the statement that the perturbative and nonperturbative terms in the super-

potential have the same phase up to sign. This implies that just as in the supersymmetric

– 6 –
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case, the axion b (which appears exclusively inside ω in all our expressions) adjusts itself

to ensure ω is real, resulting again in the equation (3.6).

The remaining real part of ∂ρV = 0 then requires

δ(e4u, Y ) = −ae4u + 2

ae4u + 4
G(Y ) . (3.17)

In the supersymmetric cases, this equation is trivially satisfied by δ = G = 0; the non-

supersymmetric cases will involve both sides being nonzero.

The form of the equation ∂aV = 0 is more strongly dependent on the choice of the

7-brane embedding f . It simplifies in the basis of the za, where it can be written as

|W0|2a
3ω2e8u

(

(2 + 3δ)∂aζ +

(

1 +
3zb∂bζ

aQ

)

δā
a∂āζ̄ − 3kbc̄∂c̄ζ̄

a
(∂a∂bζ − ∂aζ∂bζ)

)

= 0 . (3.18)

In general we thus have three complex equations (3.18) and one real equation (3.17) for the

geometric moduli coupled to the volume. To proceed further, we need to pick particular

forms of the 7-brane embedding.

Before turning to specific types of 7-brane embeddings, we note that for any solution

valid at large volume e4u ≫ 1, equation (3.17) gives

δ ≈ −G . (3.19)

G is in turn a function of the coordinates Y and not directly the volume. In the case

e4u ≫ G where the volume is much larger than this function, the expression for the

potential is dominated by the volume factor, and

V ≈ VSUSY < 0 . (3.20)

Thus for large-volume situations, the cosmological constant for a nonsupersymmetric vac-

uum will be generically negative and close to the supersymmetric value. In our examples,

this will indeed be the case.

Furthermore, when e4u ≫ G we can only satisfy (3.19) if

ω ≈ −ae4u

3
→

∣

∣

∣

∣

W0

A(Y )

∣

∣

∣

∣

eae4u/2 ≈ ae4u

3
, (3.21)

which is again the supersymmetric limit. Thus large volume cases generically result in both

the cosmological constant and the compact volume having values close to the supersym-

metric values, and as with those cases, large volume can only be achieved by tuning W0

sufficiently small to satisfy (3.21). Once this is done, however, the large volume solution

exists and is essentially the same as the supersymmetric volume, the difference being an

order-one difference between A(Y ) in each case.

Having discussed the nonsupersymmetric solutions in general, we turn now to two

specific examples of embeddings.

– 7 –
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4. Simplest Kuperstein embedding

We take as our first example of a 7-brane configuration the simplest case of Kuperstein

embeddings [8],

fK = z1 − µ , (4.1)

where µ is a parameter, in general complex; its modulus gives the minimum value of r that

the 7-brane reaches,

rmin = |µ|2/3 . (4.2)

The SO(4) symmetry of the conifold is broken to the SO(3) acting on z2, z3 and z4.

Supersymmetric vacua at the tip of the throat for this embedding were found [6] to live at

two opposite poles of the S3, z2 = z3 = z4 = 0, z1 = ±ǫ; this is an example of an embedding

without a supersymmetric moduli space. The poles are in fact the only fixed points of the

surviving SO(3) symmetry on the tip, and we shall find that the nonsupersymmetric vacua,

when they exist, exist away from the poles, and thus in S2 moduli spaces.

In what follows we shall restrict ourselves to the tip of the geometry. We have for this

embedding

∂aζ =
za

nfz1
=

za

nz1(z1 − µ)
, (4.3)

and

G =
ǫ2

aQ

(

δab̄ − zazb̄

ǫ2

)

∂aζ∂b̄ζ̄ =
ǫ2 − |z1|2
aQn2|f |2 ≡ ǫ2 − |z1|2

Γ|f |2 , (4.4)

where we used that the za are real at the tip, as well as |z1|2 +
∑

a |za|2 = ǫ2; the last

equality defines the constant Γ. The ∂ρV = 0 equation (3.17) thus gives

δ = −ae4u + 2

ae4u + 4

ǫ2 − z2

Γ|f |2 , (4.5)

where we have set z ≡ z1. Meanwhile, the ∂aV = 0 equations give us

|W0|2zaa

ω2e8unfz1

[

−δ − 2

3
− 1

3

f

f
+

1

|f |2Γ(fnz1 + (n − 1)(ǫ2 − |z1|2))
]

= 0 . (4.6)

We note that in the Kuperstein case the equations for supersymmetric vacua become

δ = 0 , za = 0 , a = 2, 3, 4 , (4.7)

and hence equation (4.6) is trivially satisfied by za = 0. Assuming therefore that za 6= 0

for at least one za leads to the nonsupersymmetric cases, and we can cancel the overall

factors to obtain

δ = −2

3
− 1

3

f

f̄
+

1

|f |2Γ(fnz + (n − 1)(ǫ2 − z2)) . (4.8)

– 8 –
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Note that the za only appear in these equations in terms of z as (z2)2+(z3)2+(z4)2 = ǫ2−z2.

z = ±ǫ only occurs for za = 0, which is the supersymmetric case; for a general solution

0 ≤ z < ǫ we will have an SO(3) remnant of the SO(4) of the conifold acting on the za,

and thus the general solution space will be an S2.

We can combine (4.5) and (4.8) to eliminate δ, obtaining a quadratic equation for z,

z2

(

− Γ +
2

τ

)

+ z

(

4

3
Γµ +

2

3
Γµ̄ − nµ

)

− 2

3
Γ|µ|2 − 1

3
Γµ2 +

(

n − 2

τ

)

ǫ2 = 0 , (4.9)

where we have defined

τ = ae4u + 4 , (4.10)

which eliminates exponential dependence on e4u; we can use (4.5) and (4.9) as our indepen-

dent equations. Let us now count degrees of freedom. We have one real equation (4.5) and

one complex equation (4.9), and two real degrees of freedom e4u and z; hence in general

our system is overconstrained. This should not be surprising since we restricted to looking

at the bottom of the throat, essentially requiring z to be real.

Do solutions exist? In general they will not, but we have a tunable parameter: µ, char-

acterizing the 7-brane embedding. Hence we expect that for certain values of µ, solutions

may exist. This turns out to be the case. The imaginary part of (4.9) reduces to a linear

equation for z,

Im µ
(

z(2Γ − 3n) − 2Γ Re µ
)

= 0 . (4.11)

If we view this relation as a constraint on µ, the remaining equations — (4.5) and the real

part of (4.9) — are then solvable for e4u and z.

There are two possible constraints on µ that can be imposed. We consider them in

turn.

4.1 Real 7-brane embedding

The simplest constraint on µ solving (4.11) is just,

Im µ = 0 , (4.12)

which at the tip is equivalent to f = f̄ . In this case (4.9) reduces to

z2

(

− Γ +
2

τ

)

+ z(2Γµ − nµ) − Γµ2 + ǫ2

(

n − 2

τ

)

= 0 , (4.13)

giving the solution

z =
τµ(2Γ − n) ±

√

4ǫ2(−2 + nτ)(−2 + Γτ) + µ2τ(8Γ + n2τ − 4nΓτ)

2(Γτ − 2)
, (4.14)

while (4.5) gives

δ =
z2(1 − Γ) + ǫ2(n − 1) + zµ(2Γ − n) − µ2Γ

Γ(z − µ)2
. (4.15)

– 9 –
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In general this is a transcendental pair of coupled equations, since z depends on τ ≡ ae4u+4,

while δ, which contains a term exponential in e4u, depends on z.

It is useful to consider the solution in the large-volume limit e4u → ∞, where the

expressions simplify; we shall see momentarily that this is a consistent limit as long as the

parameters are chosen appropriately. Of course, this is also the limit where the equations

do not receive stringy corrections and so can be trusted, and so is the regime of most

interest. The equation for δ, unpacked in terms of ω, gives for the volume

∣

∣

∣

∣

W0

A(Y )

∣

∣

∣

∣

eae4u/2 = 1 +
ae4u

3
+

ae4u + 2

ae4u + 4

ǫ2 − z2

Γ|f |2 →
∣

∣

∣

∣

W0

A(Y )

∣

∣

∣

∣

eae4u/2 ≈ ae4u

3
, (4.16)

which approaches the form of the supersymmetric expression for the volume, as argued in

general in (3.21). As with the supersymmetric vacua, we can only satisfy this transendental

equation in e4u at large volume by fine-tuning W0 to be small.

Meanwhile, the solution (4.14) for z becomes

z =
1

2Γ

(

µ(2Γ − n) ±
√

µ2n2 + 4nΓ(ǫ2 − µ2)
)

. (4.17)

We require 0 ≤ |z/ǫ| < 1 to restrict the variable to the tip; recall that |z| = |ǫ| will imply

the supersymmetric solutions. In general this will place a constraint on the magnitude of

µ, as certain values of µ will lead to unphysical z.

Let us explore this in a further limit, that of a long throat. The parameter

Γ ≡ an2Q = 2π
21/6

31/3
nTD3κ

2
4ǫ

4/3 ≡ Γ′ǫ4/3 , (4.18)

scales with a power of ǫ and hence captures the depth of the throat; the last relation above

extracts the power of ǫ and defines the pure number Γ′. The regime of ǫ small is the limit

under best control, with a long throat having a tip far from the rest of the geometry. In

this limit Γ → 0; the solution to (4.17) with the minus sign goes to infinity as 1/Γ and

hence is unphysical, while the solution with the plus sign asymptotes to1

z =
ǫ2

µ
− Γ′ǫ4/3µ

n
. (4.19)

The solution (4.19) only exists for 0 < |z| < ǫ, leading to the requirements

ǫ < µ <
nǫ−1/3

Γ′
. (4.20)

As µ approaches the edges of the acceptable range, z → ǫ and the nonsupersymmetric vauca

approach one of the supersymmetric ones; within the range, we have nonsupersymmetric

vacua filling out an S2 and some intermediate value of z.2

1To be precise, to achieve this result we have taken an expansion in ǫ4/3(1 − ǫ2/µ2), but for ǫ ≪ 1 this

quantity is always small for the ranges of µ permitted in (4.20).
2Strictly speaking, our coordinate choice to eliminate z = z1 in terms of the other variables breaks down

at the one value µ = ǫ1/3
p

n/Γ′ that gives z = 0.
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Figure 1: A cross-section of the tip with supersymmetric vacua at the poles and nonsupersym-

metric vacua interpolating between as µ is varied.

Hence we see that for the regime of most theoretical control, namely large volume and

a long throat, a two-sphere of nonsupersymmetric vacua appears along with the pointlike

supersymmetric vacua (see figure 1).

Turning now to the four-dimensional cosmological constant, we consider the value of

the potential (3.13) at these minima in the large-volume limit. At large volume we have

both δ and G showing up at zeroth order in e4u, which are subleading, so as in (3.20) we

obtain V ≈ VSUSY. Including the subleading terms, using δ ≈ −G, we get

V ≈ −a|W0|2e−8u

ω2

(

ae4u

3
+

1

Γ′

ǫ2 − z2

ǫ4/3(z − µ)2
+ . . .

)

= VSUSY − a|W0|2e−8u

ω2

1

Γ′

ǫ2 − z2

ǫ4/3(z − µ)2
+ . . . (4.21)

We thus find that the nonsupersymmetric vacua in this limit have (slightly) lower cosm-

logical constant than the supersymmetric ones.

This may seem unusual, but is actually common for supergravities with AdS vacua.

In particular, in 5D maximally supersymmetric gauged supergravity, which consists of

the lowest-mass modes of the compactification of type IIB supergravity on AdS5 ×S5, the

maximally supersymmetric vacuum with all scalars vanishing is actually a global maximum

of the potential, while other solutions with less SUSY or no SUSY exist with more negative

values of V , both stable and unstable.

Finally, one is curious about the stability of these vacua, which requires calculating

the second derivatives; we do so here in the limits e4u → ∞ and ǫ → 0. Taking advantage

of the S2 symmetry we will evaluate the second derivatives at the particular point

(z2)2 = (z3)2 = (z4)2 =
ǫ2 − (z)2

3
, (4.22)

where z is the solution given in equation (4.19). To facilitate our series expansion of the

second derivatives in powers of ǫ we will first consider the case where µ is some fraction of
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its maximum value

µ = βµmax =
βnǫ−1/3

Γ′
, |β| ≤ 1 . (4.23)

In this limit we have evaluated the leading order terms of the second derivatives with

respect to the holomorphic variables as

Vρρ =
a3

3e8u
, Vρa =

−a2Γ′ǫ1/3
√

1 − β2

3
√

3e8un2β2
, (4.24)

Vaa =
−aΓ′(27 + β2 + 2β4)

135e8un2β4ǫ2/3
, Vab|a6=b =

aΓ′(−27 + 26β2 + β4)

135e8un2β4ǫ2/3
,

where Vαβ ≡ ∂α∂βV ; in this case Vᾱβ̄ ≡ (Vαβ)∗ = Vαβ . The mixed second derivatives are a

bit more complicated,

Vρρ̄ =
a4

3e4u
, Vρā =

a3Γ′ǫ1/3
√

1 − β2

3
√

3e4un2β2
,

Vaā =
a2Γ′2ǫ2/3(1 − β2)

9e4un4β4
+

2aΓ′(−9 + 23β2 + β4)

135e8un2β4ǫ2/3
, (4.25)

Vab̄|a6=b =
a2Γ′2ǫ2/3(1 − β2)

9e4un4β4
+

aΓ′(−18 + 19β2 − β4)

135e8un2β4ǫ2/3
.

Since the vacua have V < 0, they will be in AdS space, and thus stability is determined

by the Breitenlohner-Freedman bound, which in 4D has the form

m2

|V | ≥ −3

4
, (4.26)

where m2 represents each of the eight eigenvalues of the mass matrix

M2 =

(

gγβ̄Vαβ̄ gγβ̄Vᾱβ̄

gγ̄βVαβ gγ̄βVᾱβ

)

. (4.27)

We can evaluate the eigenvalues of M2/|V | to be

m2

|V | =

{

a2e8u

3
,
a2e8u

3
,
11

15
+

3

5β2
,

2

15
+

6

5β2
,

2

15
+

6

5β2
, 0, 0, 3 − 3

β2

}

. (4.28)

So if 2/
√

5 ≤ |β| ≤ 1 the last eigenvalue is greater than −3/4 and all of the eigenvalues sat-

isfy the Breitenlohner-Freedman bound, and therefore we have stable non-supersymmetric

vacua.

If we expand µ around its minimum

µ = βµmin = βǫ , |β| ≥ 1 . (4.29)

We can evaluate the eigenvalues to be

m2

|V | =

{

a2e8u

3
+

6

Γ′2ǫ8/3(β2 − 1)2
,
a2e8u

3
+

6

Γ′2ǫ8/3(β2 − 1)2
,

6n2(4 + β2)

5Γ′2ǫ8/3(β2 − 1)
, (4.30)

6n2(4 + β2)

5Γ′2ǫ8/3(β2 − 1)
,
3(−5 + n2(4 + β2))

5Γ′2ǫ8/3(β2 − 1)2
, 0, 0,

−3(1 + n2β2)

Γ′2ǫ8/3(β2 − 1)2

}

.
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Since the last eigenvalue is large and negative for all values of β we see that there are not

stable vacua near µ = ǫ. Similarly, we also considered the intermediate value of µ being of

order 1 and found the eigenvalues

m2

|V | =

{

a2e8u

3
,
a2e8u

3
,

6n2

5Γ′2µ2ǫ2/3
,

6n2

5Γ′2µ2ǫ2/3
,

3n2

Γ′2µ2ǫ2/3
, 0, 0,

−3n2

Γ′2µ2ǫ2/3

}

, (4.31)

where the last one is seen to be large and negative. Thus in most of these regimes no stable

nonsupersymmetric vacua exist, but stable vacua do appear for µ near its upper bound.

4.2 Complex 7-brane embedding

Consider now the other possible constraint on µ; this is more complicated as it involves z

as well:

Re µ = z

(

1 − 3n

2Γ

)

. (4.32)

Strictly speaking we should be thinking of Re µ being fixed and this constituting an extra

constraint on z. However, mathematically it is convenient to eliminate Re µ from the

quadratic equation for z. Terms linear in z disappear leaving us with

z2 =

(

Γ(Im µ)2/3 + ǫ2(2/τ − n)
)

(−3n2/4Γ + 2/τ − n)
. (4.33)

Together (4.32) and (4.33) produce a constraint on µ in terms of Γ and n only:

(Re µ)2
(

2

τ
− n − 3n2

4Γ

)

=

(

1

3
Γ(Im µ)2 + ǫ2

(

2

τ
− n

))(

1 − 3n

Γ
+

9n2

4Γ2

)

, (4.34)

and given this constraint the solution for z comes simply from (4.32). Let us consider the

limit of large volume (τ → ∞) and long throat (Γ → 0) without making an assumption

about the magnitude of µ relative to Γ. In this case (4.34) reduces to

(Re µ)2 + (Im µ)2 ≡ |µ|2 =
3n

Γ′
ǫ2/3 . (4.35)

Hence as with the Im µ = 0 case, where |µ| was bounded below at ǫ and above at ǫ−1/3,

this solution also involves a constraint on the magnitude of |µ|, in this case determining

the exact value. We find for z,

z = −2Γ′ǫ4/3

3n
Re µ . (4.36)

For a typical solution of (4.35) we have Reµ ∼ ǫ1/3, meaning

z ∼ ǫ5/3 , (4.37)

and the solution is driven towards z ∼ 0. Thus these solutions approach the maximal S2

at the tip. In the particular case Imµ = 0, we find

z = −2ǫ

√

Γ

3n
= −2

ǫ2

µ
, (4.38)
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which also coincides with a real 7-brane embedding solution from the previous subsection

with the particular value Re µ =
√

3n/Γ′ǫ1/3.

Studying the issue of stability, if we set

(Im µ)2 =
β3nǫ2/3

Γ′
, (Re µ)2 =

(1 − β)3nǫ2/3

Γ′
, (4.39)

with 0 ≤ β ≤ 1, we find the eigenvalues of the mass matrix M2/|V | to be

m2

|V | =

{

ae8u

3
,
ae8u

3
,

2n

5Γ′ǫ4/3
,

2n

5Γ′ǫ4/3
,

n

5Γ′ǫ4/3
, 0, 0,− n

5Γ′ǫ4/3

}

, (4.40)

independent of β. Since the last eigenvalue is large and negative, these vacua are unstable.

In summary, we have found that with a constraint on the embedding parameter µ we

can generate S2’s of nonsupersymmetric vacua in the large-volume limit, in some cases

stable ones. We turn now to a second example of a 7-brane embedding, which shares

several features with the Kuperstein case.

5. Karch-Katz embedding

In this case we consider the embedding [9],

fKK = −(z1)2 + (z2)2

2
− µ2 , (5.1)

which breaks SO(4) down to SO(2) × SO(2), with the former SO(2) acting on z1 and z2

and the latter acting on z3 and z4. The supersymmetric vacua consist of two disjoint S1’s,

where on each S1 one SO(2) acts naturally while the other is trivial; as with the Kuperstein

case some of the symmetry leaves the supersymmetric vacua fixed, but unlike that case

here there is a moduli space generated by the rest of symmetry. Likewise, as with the

Kuperstein case we shall see that the nonsupersymmetric vacua nontrivially realize all of

the symmetry, and for this embedding the corresponding spaces of vacua will have topology

T 2.

We have for this embedding

∂2ζ = 0, ∂iζ = − zi

nf
, i = {3, 4} , (5.2)

and

G =
R2(ǫ2 − R2)

Γ|f |2 , (5.3)

where R2 ≡ (z1)2 +(z2)2. For this example we will proceed directly to the long throat and

large modulus limit, where we have

δ = −ae4u + 2

ae4u + 4
G ≈ −G . (5.4)
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The first derivatives can be calculated to be

∂2V = 0 , (5.5)

∂iV =
|W0|2azi

ω23e8unf

(

−2

3
− δ − 1

3

f

f̄
+

n

Γf̄
(2R2 − ǫ2) +

(n − 1)R2(ǫ2 − R2)

Γ|f |2
)

= 0 . (5.6)

We can combine equations (5.3), (5.4), and (5.6), giving the complex equation

−2

3
|f |2 − 1

3
f2 +

n

Γ

(

µ2(2R2 − ǫ2) +
1

2
ǫ2R2

)

= 0 , (5.7)

which is clearly quadratic in R2. As in the Kuperstien case, restricting to the tip of the

geometry we find that the equations are generically overconstrained, and we again treat µ

as a tunable parameter in order to find solutions to equation 5.7. Considering the imaginary

part of 5.7, we have

(Im[µ2])

(

R2

(

2n

Γ
− 1

3

)

− nǫ2

Γ
− 2

3
Re[µ2]

)

= 0 , (5.8)

giving again two options for constraining the embedding.

5.1 Real 7-brane embedding

If we satisfy equation 5.8 by forcing Im[µ2] = 0, we can solve equation 5.7 to obtain

R2 = −2µ2 +
n

Γ
(ǫ2 + 4µ2) ± 1

Γ

√

n(16µ4(n − Γ) + 8µ2ǫ2(n − Γ) + nǫ4) . (5.9)

For the choice of positive sign, there is no value of µ that gives R2 ≤ ǫ2. Choosing the

minus sign and assuming ǫ2 ≤ µ2, we have in the small-ǫ limit,

R2 ≈ −Γ′µ2ǫ4/3

2n
+

ǫ2

2
. (5.10)

In order to confine the solutions to the tip, the first term must not dominate over the

second. Thus we have solutions in the window ǫ2 ≤ µ2 ≤ ǫ2/3. These solutions, as

stated, have topology T 2 for 0 < R2 < ǫ2; for choices of µ much less than the maximum

µ2 ≪ ǫ2/3, the second term in (5.10) dominates and the vacua approach the square torus

(z1)2 + (z2)2 = (z3)2 + (z4)2 = ǫ2/2.

Since we have δ ≈ −G in this limit, we again have the volume and potential ap-

proaching supersymmetric values (3.20), (3.21). Examining the stability of the vacua, we

set

µ2 =
βnǫ2/3

Γ′
|β| < 1 , (5.11)

and the same steps as in equations (4.24) through (4.28) we can calculate

m2

|V | =

{

a2e8u

3
,
a2e8u

3
,

9

5β2
+

1

β
− 22

15
, 0, 0, (5.12)

9

5β2
− 1

β
− 22

15
,
aΓ′e4u(β2 − 1)ǫ4/3

4n2β2
,
aΓ′e4u(β2 − 1)ǫ4/3

4n2β2

}

.
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Again a small range of β leads to stable solutions, as the last two eigenvalues are the most

constraining on β:

1

1 + 3n2

aΓ′e4uǫ4/3

≤ β2 < 1. (5.13)

Most solutions are hence unstable, but stable examples do exist at the very upper bound of

the allowed values of µ2; unlike the Kuperstein case, here stability depends on the interplay

between the large volume and the small value of ǫ.

5.2 Complex 7-brane embedding

If we allow µ2 to remain complex, to satisfy (5.8) we must have the constraint

Re[µ2] =
−R2

2
+

n(6R2 − 3ǫ2)

2Γ′ǫ4/3
, (5.14)

which when combined with equation 5.7 yields

R2 =
ǫ2

2
±
√

3nΓ(3n + Γ)(3nǫ4 − 4 Im[µ2]2Γ)

6n(3n + Γ)
. (5.15)

We see that to keep R2 real we need

Im[µ2]2 = β
3nǫ8/3

4Γ′
β ≤ 1, (5.16)

so therefore

R2 =
ǫ2

2
±
√

Γ′(1 − β)

12n
ǫ8/3 . (5.17)

The first term dominates, giving vacua again very close to the square torus at R2 = ǫ2/2.

Calculating the second derivatives, for convenience we define

z1 = z2 =

√

R2

2
z3 = z4 =

√

ǫ2 − R2

2
(5.18)

this allows us to determine the eigenvalues as

m2

|V | =

{

a2e8u

3
,
a2e8u

3
,

16n

5Γ′ǫ4/3
,

12n

5Γ′ǫ4/3
,

12n

5Γ′ǫ4/3
, 0, 0,

−4n

Γ′ǫ4/3

}

(5.19)

The final eigenvalue is large and negative, and hence these solutions are unstable.

We have seen that the Karch-Katz case is closely analogous to the Kuperstein case,

with nonsupersymmetric vacua appearing at certain restricted values of µ2 and filling out

a two-dimensional moduli space, in this case T 2; stability of these AdS vacua is possible

but not inevitable.
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6. Vacua for antibranes

Everything we have discussed so far applies to the potential felt by D3-branes in the

presence of nonperturbative moduli stabilization. We now argue that for D3-branes, the

solutions at the tip of the warped throat are the same.

If we consider the nonperturbative effects on the D3-branes at the tip of the throat we

know that the source for gravity remains unchanged, but the sign of C4 charge is opposite

that of D3-branes. This is equivalent [6] to flipping the sign of the imaginary part of ζ, or

ζ(Y ) ↔ ζ̄(Ȳ ). In the two examples we considered we had the embedding function of the

form

f(za) = g(za) + µ , (6.1)

where g(za) is polynomial in the za with real coefficients, and for the KK case we conven-

tionally write µ2 instead of µ. Since at the tip the za are real, it follows that µ is the only

complex variable in our entire analysis. If we now consider the ∂aV equation (3.18) and

take the real and imaginary parts, we see that we must have the general forms

Im[∂aV ] = Im[µ]H(z,Re[µ], Im[µ]2) Re[∂aV ] = H ′(z,Re[µ], Im[µ]2) , (6.2)

for some functions H and H ′. Therefore if have D3-branes, where Im[µ] → −Im[µ], the

equations for ∂aV = 0 are unchanged. Implicit here is the assumption that the axion b has

adjusted itself to take whatever value necessary to assure δ is real. We thus find the same

locations of the antibranes as in the brane case.

7. Conclusions

We have obtained the general equations for nonsupersymmetric D3-brane vacua in type

IIB flux compactifications stabilized by nonperturbative effects, and solved and analyzed

them in the particular cases of two specific 7-brane embeddings at the tip of the warped

deformed conifold throat. Nonsupersymmetric vacua exist in general, but to localize them

at the tip requires one tuning of the 7-brane embedding; D3-branes were shown to have

the same solutions.

In the large volume, long throat limit, these vacua have a few general interesting

properties. Both the overall compact volume and the value of the effective four-dimensional

cosmological constant approach the corresponding values in the supersymmetric case in this

limit. This implies that the precise location of the D3-brane has little effect on the overall

volume, as seems intuitively reasonable, and that the nonsupersymmetric vacua are anti-de

Sitter solutions.

The vacua in general come in continuous families, corresponding to the orbits of the

geometric symmetries preserved by the 7-brane embedding. Interestingly, the nonsuper-

symmetric vacua we have obtained come in higher-dimensional spaces than the correspond-

ing supersymmetric vacua. We have also analyzed the question of stability, comparing the

eigenvalues of the mass matrix to the Breitenlohner-Freedman bound, and found that (per-

turbative) stability for nonsupersymmetric vacua is possible though not generic. Nonethe-

less, the existence of stable nonsupersymmetric vacua for branes in warped throats is worth
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remarking upon. Although the equations are considerably more difficult, the existence of

nonsupersymmetric vacua off the tip should be expected and would be interesting to inves-

tigate. Furthermore, having mapped out further the landscape of brane vacua in warped

throats, further investigation of the consequences for dynamics such as brane inflation

would be of considerable interest.
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